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Abstract. In this paper, a GPU-based simulation of a Newtonian fluid
flow on sudden contraction geometries is presented. The fluid is modeled
with the Navier-Stokes equations and solved by the projection method
with first order in time and second order in space discretizations. A
semi-implicit scheme of finite differences is used in the dicretization
process. The solution of the resulting system of linear equations is con-
sidered as an optimization problem and is solved by the preconditioned
biconjugate gradient stabilized method (BiCGSTAB) implemented on a
graphic processor using the CUDA libraries cuSPARSE and cuBLAS.

Keywords: sudden contraction geometry, Navier-Stokes equations, GPU,
CUDA.

1 Introduction

Sudden contraction geometries for different fluids are used in many areas of
engineering and industrial processes such as heating pipes, polymer processing,
tube capillary viscometers, biomedical instruments, thermoforming, injection
molding, etc. Therefore, understanding and predicting the behavior of fluids
in these geometries is of particular importance within fluid mechanics and is a
problem that is continuously studied from different perspectives.

For example, in [6], a hybrid model reduction scheme to approximate the
Navier-Stokes equations (NSE) with a low-dimensional model on a contraction
geometry is presented. The use of a novel projection method based on midpoint
rule for the solution of NSE is discussed in [13]. In [8], Guermond and Minev
develop a high-order time approximation for the NSE as an alternative for the
classical projection method.

However, the high computational cost involved with this type of studies
and simulations is a problem that any investigation related to Computational
Fluid Dynamics (CFD) and, therefore, researches related to flow on contraction
geometries must overcome. This intensive computation is the product of many
factors such as the size of the meshes necessary for the correct discretization, the
physical domain that needs to be simulated and the number of variables that
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must be solved. Therefore, the parallelization of CFD simulations is a topic that
constantly receives attention and new proposals.

For example, in [17], Willis presents an MPI implmentation for fluid flow in
pipelines. GPU/multicore-based solution to CFD simulations using the NSE are
described in [4,10,12] and [16]. An OpenMP-based solution for the NSE on a
cavity lid driven is developed in [1].

Therefore, we can state that the motivation for this work and its objective it
is very clear: the GPU-based parallelization of the simulation of flow on sudden
contraction geometries in order to decrease the computing time and improve the
efficiency of the utilization of hardware.

2 Mathematical Model

The Navier-Stokes equation models the fluids movement. The non-dimensional
vector form of this equation for incompressible fluids and its incompressibility
constraint are defined [11] as:

∂v

∂t
+∇ · (v⊗v) = −∇p+

1

Re
∇2v,

∇ · v = 0,
(1)

where v is the adimensional vectorial field of velocity and p is the adimensional
scalar field of pressure. In 2D, NSE involves three equations and three unknowns,
u, v and p.

Reynolds number is a dimensionless quantity defined as:

Re =
ρVoLo

µ
, (2)

where V0 is the reference velocity, L0 is the characteristic length and ρ is the
fluid density. It represents the ratio between inertial and viscous forces. If it is
a small value, the flow occurs in parallel lines and is called laminar flow; if the
Reynolds number increases, the ordered structure loses its order, giving rise to
a flow characterized by eddies and vortexes, called turbulent flow.

3 Numerical Solution

3.1 Projection Method

The main idea of the projection method is to temporarily solve the NSE (Eq. (1))
by omitting the pressure p and then project the result into a vector field of
solenoid velocity [2,3,14]. The process comprises three main steps:

– First, a temporary velocity field v∗ = [u∗, v∗] is defined as:

v∗ = vt+1
sol +∆t∇pt+1. (3)
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Algorithm 1 Projection method for NSE for incompressible fluids

Initialization of variables, arrays and differentiation matrices
Initial condition for velocity field
for iter = 1 : MAX
Update of boundary conditions
Compute u∗ and v∗

Solve Poisson equation for pressure pt+1

Calculate new velocities u∗ and v∗ with pt+1

end

As pressure is neglected, the rectangular components of (1) are:

u∗ − ut

∆t
+ ut · ∇ut =

1

Re
∇u∗, v∗ − vt

∆t
+ vt · ∇vt =

1

Re
∇v∗, (4)

for the horizontal and vertical components, respectively.
– Next, the divergence of (3) is calculated to obtain the Poisson equation:

∆t∇2pt+1 = ∇ · v∗. (5)

The resulting pressure pt+1 calculated with (5) is a scalar field that ensures
that the final velocity vt+1

sol will meet the incompressibility constraint.
– At last, the final velocity vt+1

sol is computed as:

vt+1
sol = v∗ −∆t∇pt+1. (6)

Algorithm 1 shows the pseudo-code for the described projection method.

3.2 Problem Specification

We choose the 2:1 and 4:1 ratio contraction geometries (Fig. 1) because they are
among the most used in investigations and practical applications [6,17]. Further-
more, the dimensions utilized were chosen to improve numerical accuracy at the
contraction region. Also, it is important to mention that this 2D representation
corresponds to a longitudinal cross-section of a pipe.

Boundary conditions for the numerical solution are: for the velocity field v,
no-slip conditions at the wall (u = v = 0), u = uj (parabolic profile) and v = 0
at the inlet (inflow) and ∂v

∂n = 0 at the outlet (outflow). The parabolic profile of
the horizontal component u of velocity is defined as:

uj = umax

[
1−

(
r2

R2

)]
, (7)

where umax is the maximum value of u, right in the middle of the inflow, R is
the inlet radius, r is the radius of the j-th element of u at the inlet and j is the
vertical index for each one of these elements. For the scalar field of pressure p,
homogeneous Neumann boundary conditions are used ( ∂p

∂n = 0) at all boundaries
except at the outlet, where p = 0. The described boundary conditions are used
for both contractions, i.e. geometries 4:1 and 2:1.
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Fig. 1. Sudden contraction geometry (a) 2:1 and (b) 4:1

3.3 Spatial Discretization

Domain is discretized with a regular mesh and centered finite differences of order
O(h2). Spatial step size for both components depends upon the geometry. For
contraction 2:1 (Fig. 1 (a)), ∆x = 20L0

COLS and ∆y = 2L0

ROWS where COLS =
20N represents the maximum number of cells in the horizontal direction (x
axis), ROWS = 2N represents the maximum number of cells in the vertical
direction (y axis) and L0 = 1 is the width of the outlet. For contraction 4:1
(Fig. 1 (b)), ∆x = 20L0

COLS and ∆y = 4L0

ROWS where ROWS = 4N represents the
maximum number of cells in the vertical direction. Constant N is an integer
number, multiple of two, that is utilized to keep the right proportion between
the width and length of the domain. In all simulations presented in this work,
∆x = ∆y. Also, in order to avoid a checkerboard solution, a full-staggered mesh
(Fig. 2) is used in all cases [9].

Discretization for [u∗, v∗] (Eq. (4)) and pressure p (Eq. 5) produces the linear
systems of equations:

Au∗ = RHSu∗ , Bv∗ = RHSv∗ , Cpt+1 = RHSp, (8)

respectively, where A and B are sparse positive definite matrices, at least for ∆t
reasonably small, and C is a sparse semi-positive definite matrix. Also, A, B and
C are non-symmetrical. For these reasons, the solution of these systems is con-
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Fig. 2. Full-staggered mesh, 2D

sidered as an optimization problem and hence, the preconditioned BiCGSTAB
method is utilized to solve them.

To compute the final velocity, Eq. (6) is discretized as:

ut+1
i+1/2,j = u∗i+1/2,j −∆t

pt+1
i+1,j − p

t+1
i,j

∆x
,

vt+1
i,j+1/2 = v∗i,j+1/2 −∆t

pt+1
i,j+1 − p

t+1
i,j

∆y
,

(9)

for its horizontal and vertical components respectively.

4 General Purpose Computing on GPU: GPGPU

The use of GPUs to solve compute-intensive scientific and engineering appli-
cations is known as General-Purpose computing on Graphics Processing Units
(GPGPU).

CUDA is a combination of a GPU hardware and a parallel programming
model that allows the utilization of NVIDIA GPUs in GPGPU applications.

4.1 CUDA Programming Model

The heterogeneous CUDA programming model enables the use of a GPU as a
co-processor of the CPU. In this context, GPU is called device and CPU is called
host. A CUDA program is composed of serial code sections for the host (on some
applications, as in this work, sections of the serial code can be parallelized with
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Fig. 3. CUDA programming model

OpenMP, MPI, pthreads, etc.) and parallel code sections for the device, called
kernels. The serial code is executed by the main thread on the host; the kernels
are executed in parallel within the device by a massive number of CUDA threads.
This general structure is shown in Fig. 3.

4.2 cuSPARSE and cuBLAS Libraries

NVIDIA cuSPARSE library contains a set of basic linear algebra subroutines
designed for sparse matrix operations that takes advantage of the CUDA parallel
programming model as well as of the computational resources of the NVIDIA
GPUs in order to perform efficiently its functions.

NVIDIA cuBLAS library is an implementation of BLAS (Basic Linear Alge-
bra Subprograms) for dense matrices on top of the CUDA runtime. The library

Algorithm 2 CUDA-based implementation overview

CUSPARSE-CUBLAS initialization
Compute ilu(0) preconditioners for matrices A, B and C (cuSPARSE)
Initial condition for v
for iter = 1 : MAX
Update BC
Compute RHSu∗ and RHSv∗ (kernels)
Solve Au∗ = RHSu∗ and Bv∗ = RHSv∗ (cuSPARSE-cuBLAS,BICGSTAB)
Compute RHSp (kernel)
Solve Cpt+1 = RHSp (cuSPARSE-cuBLAS,BICGSTAB)
Update of u∗ and v∗ with pt+1

end
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includes matrix-vector and matrix-matrix products. The cuBLAS library also
provides functions for writing and retrieving data from the GPU.

CUSPARSE and CUBLAS can be used with C and C++ programming
languages. To use the functions of both libraries, they should be initialized,
the data must be transferred from the host to the GPU memory and then it
must be converted to the corresponding format.

5 Parallel Implementation

The systems of linear equations (8) are not suitable to be solved with direct
methods due data dependency. Therefore, we choose to solved them as an op-
timization problem with the BICGSTAB method. Every step of the general
BICGSTAB is parallelized with combinations of functions of cuSPARSE and
cuBLAS libraries; the ilu(0) preconditioner is also implemented with functions
of the cuSPARSE library. In order to use the functions of these libraries, the
arrays are copied to the GPU memory and then they are converted to the
required formats of sparse matrices. Also, we utilized kernels to compute the
RHS vectors for each of the aforementioned systems.

To check the GPU implementation and utilization we used the nvprof and
nvvp profilers. The general structure of our implementation is shown in Algo-
rithm 2.

6 Results

The simulations have been conducted under Ubuntu 14.04 LTS using C language
on a computer with an intel i7-4770 processor at 3.4 GHz and 16 GBytes of RAM
memory. The CUDA implementation is made with a Maxwell GeForce GTX 970
GPU with compute capability 5.2 that has 4 GBytes of global memory. All the
results presented are double precision floating point.

The results presented in Section 6.1 and 6.2 are computed with Re = 1,
which means that there is a balance between inertial and viscous forces. This
balance translates into laminar flows, such as the ones shown in those sections.
On the other hand, some simulations of flows in which Re >> 1 are presented
in the Section 6.3.

6.1 Contraction 2:1

Magnitude of velocity for a contraction 2:1 after 500 iterations is shown in Fig. 4
(a). Domain is discretized with N = 128. Furthermore, umax = 1, ∆t = 0.003
and Re = 1.

Simulation shows that the maximum velocity at the outflow is twice its value
at the inflow, i.e. twice the value of umax. This agrees with the Bernoulli equation,
since the pressure in the outlet is smaller than the pressure in the inlet (Fig. 5
(c)) and, therefore, the velocity at the outlet is greater than the velocity at the
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Fig. 4. Magnitude of velocity: (a) Contraction 2:1 and (b) Contraction 4:1.
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Fig. 5. Contraction 2:1. (a) Vorticity magnitude. (b) Streamlines. (c) Pressure

inlet to preserve the total energy of the flow. This behavior is known as the
Bernoulli effect.
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Fig. 6. Contraction 4:1. (a) Vorticity magnitude. (b) Streamlines. (c) Pressure

Magnitude of vorticity, defined as:

ω = ∇× v, (10)

is shown in Fig. 5 (a).

It can be seen that the corner at the entrance to the narrow part of the
geometry is the point where the vorticity has the largest value. Also, it can be
noted that ω has a relatively high value close to the walls of the narrow section
of the contraction. This is due to the fact that the fluid velocity is larger in this
section and thus, the difference with the null velocity at the walls is greater here
than everywhere else.

Streamlines, i.e. the paths or curves in which the function stream ψ, computed
as:

− ||ω|| = ∇2ψ, (11)

has a constant value, are shown in Fig. 5 (b). These curves represent the path
that would follow a massless particle in the flow and they are instantaneously
tangent to the velocity vector.
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6.2 Contration 4:1

The magnitude of velocity for a contraction 4:1 after 500 iterations is shown
in Fig. 4 (b). Domain is discretized with N = 128. Furthermore, umax = 1,
∆t = 0.003 and Re = 1.

Similarly as in the simulation for contraction 2:1, in this case, the velocity
and pressure values comply with the Bernoulli effect.

Vorticity magnitude, streamlines and pressure are shown in Fig. 6 (a), (b) and
(c) respectively. It can be seen that the point for maximum vorticity, streamlines
pattern and pressure behavior are similar to those obtained for contraction 2:1.

6.3 Simulations for High-Re Flows

As the value of Re increases, inertial forces overpower viscosity forces and
the flow loses its laminar structure and turns into a turbulent flow, which
is characterized by eddies, vortexes and chaotic changes in the velocity and
pressure.

Fig. 7 (a) and (b), show a close-up of the eddies that arise at the wall of
the contraction 2:1 with Re = 100 and Re = 1000, respectively. Likewise,
turbulences generated in the contraction 4:1 for fluids with Re = 100 and
Re = 1000, are shown in Fig. 7 (c) and (d), respectively. For both geometries,
∆x = ∆y = 1

128 and 500 iterations were computed. For the simulations with
Re = 100, ∆t = 0.003 and for the simulations with Re = 1000, ∆t = 0.0003.
The flow patterns obtained coincide with results presented in [7] and [15].

6.4 Convergence Analysis

Order m of the implementation can be calculated with [5]:

m =

log

(
fh

2
(x,y)−fh(x,y)

fh
4
(x,y)−fh

2
(x,y)

)
log 2

, (12)

if h is sufficiently small and succesive meshes are related by a 2:1 proportion.
Discretization error e over the finest mesh is defined as [5]:

eh
4
≈
fh

4
(x, y)− fh

2
(x, y)

2m − 1
. (13)

In this work, for both geometries, m is computed with N = 32, N = 64 and
N = 128. Time step ∆t is fixed as ( 1

128 )2 because the implemented projection
method is first order in time and second order in space. As a result, ∆t should
be equal or smaller than the step size of the finest mesh, i.e. ∆t ≤ ∆x. This is
to observe second order in ∆x convergence.

Table 1 shows the results of the analysis for both velocity components of
both geometries. The results denote a proper implementation.
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Fig. 7. Contraction 2:1. (a) and (b), zoom in of vortexes with Re = 100 and Re = 1000
respectively. Contraction 4:1. (c) and (d), zoom in of vortexes with Re = 100 and
Re = 1000 respectively

Table 1. Order m and error e estimation after 500 iterations for N = 128

Component
Contraction 2:1 Contraction 4:1

m e m e

u 2.016 1.969 × 10−5 2.006 2.230 × 10−5

v 1.897 6.900 × 10−7 1.959 3.8708 × 10−12

Execution time for all the meshes utilized in the convergence analysis are
shown in Table 2 and 3, for contraction 2:1 and 4:1, respectively. It is important
to state that the pressure matrix C has a high value condition number and,
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because of this characteristic, it converges slower than the other matrices. This
issue contributes adversely on the computation time. However, we are currently
working on the solution of this problem with the ADI method.

Table 2. Execution time for 500 iterations for different meshes, contraction 2:1

N ∆x, ∆y Points Cells Execution time (min)

32 0.03125 62785 61440 247.2

64 0.015625 248449 245760 1117.2

128 0.0078125 988417 983040 5991.7

Table 3. Execution time for 500 iterations for different meshes, contraction 4:1

N ∆x, ∆y Points Cells Execution time (min)

32 0.03125 103809 102400 306.2

64 0.015625 412417 409600 1347.5

128 0.0078125 1644033 1638400 8982.5

7 Conclusions and Future Work

The flow simulations on sudden contraction geometries described in this paper,
use the functions of the CUSPARSE and CUBLAS libraries to implement on
a GPU the preconditioned BiCGSTAB method. This method is used to solve
the systems that generates the discretization of the Navier-Stokes equations and,
therefore, its appropriate parallelization has a significant impact in the reduction
of computation time, which is the main objective of this work.

The described method that numerically estimates the order and error of the
discretization, can not only be applied for simulations of contraction geometries;
is a general procedure that can be used for other CFD applications as well as
for discretizations that arise from the numerical solution of differential equations
related to other areas of science.

As future work, we will be working with simulations of non-Newtonian fluxes,
e.g. Viscoelastic fluids in the sudden contraction geometries described herein;
this is the final stage of our investigation. Meanwhile, we are going to tackle the
problem of pressure matrix C with the ADI method and Thomas algorithm, a
combination that appropriately fits a GPU application. Also, GPU clusters will
be used to simulate larger physical domains.
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7. Griebel, M., Rüttgers, A.: Multiscale simulations of three-dimensional viscoelastic
flows in a square-square contraction. J. Nonnewton Fluid Mech. 205, 41–63 (2014)

8. Guermond, J.L., Minev, P.: High-order time stepping for the incompressible Navier-
Stokes equations. SISC 37(6), A2656–A2681 (2015)

9. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. Phys. Fluids 8(2), 2182–2189 (1965)

10. Hashimoto, T., Yasuda, T., Tanno, I., Tanaka, Y., Morinishi, K., Satofuka, N.:
Multi-gpu parallel computation of unsteady incompressible flows using kinetically
reduced local Navier-Stokes equations. In: Computers and Fluids. vol. 167, pp.
215–220 (2018)

11. Hoffmann, K.A., Chiang, S.T.: Computational Fluid Dynamics, vol. First.
Engineering Education System, Kansas, fourth edn. (2000)

12. Huang, J., Lin, Z., Ma, C., Yuan, X.: Gpu speed-up for the implicit Navier-Stokes
solver. In: Proceedings of the ASME Turbo Expo. vol. 6 (Jun 2013)
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